skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kern, Christoph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present geochemical data from gas samples from ~1200 km of arc in the Central Volcanic Zone of the Andes (CVZA), the volcanic arc with the thickest (~70 km) continental crust globally. The primary goals of this study are to characterize and understand how magmatic gases interact with hydrothermal systems, assess the origins of the major gas species, and constrain gas emission rates. To this end, we use gas chemistry, isotope compositions of H, O, He, C, and S, and SO2 fluxes from the CVZA. Gas and isotope ratios (CO2/ST, CO2/CH4, H2O/ST, δ13C, δ34S, 3He/4He) vary dramatically as magmatic gases are progressively affected by hydrothermal processes, reflecting removal and crustal sequestration of reactive species (e.g., S) and addition of less reactive meteoric and crustal components (e.g., He). The observed variations are similar in magnitude to those expected during the magmatic reactivation of volcanoes with hydrothermal systems. Carbon and sulfur isotope compositions of the highest temperature emissions (97–408 ◦C) are typical of arc magmatic gases. Helium isotope compositions reach values similar to upper mantle in some volcanic gases indicating that transcustal magma systems are effective conduits for volatiles, even through very thick continental crust. However, He isotopes are highly sensitive to even low degrees of hydrothermal interaction and radiogenic overprinting. Previous work has significantly underestimated volatile fluxes from the CVZA; however, emission rates from this study also appear to be lower than typical arcs, which may be related to crustal thickness. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Subduction transports volatiles between Earth’s mantle, crust, and atmosphere, ultimately creating a habitable Earth. We use isotopes to track carbon from subduction to outgassing along the Aleutian-Alaska Arc. We find substantial along-strike variations in the isotopic composition of volcanic gases, explained by different recycling efficiencies of subducting carbon to the atmosphere via arc volcanism and modulated by subduction character. Fast and cool subduction facilitates recycling of ~43 to 61% sediment-derived organic carbon to the atmosphere through degassing of central Aleutian volcanoes, while slow and warm subduction favors forearc sediment removal, leading to recycling of ~6 to 9% altered oceanic crust carbon to the atmosphere through degassing of western Aleutian volcanoes. These results indicate that less carbon is returned to the deep mantle than previously thought and that subducting organic carbon is not a reliable atmospheric carbon sink over subduction time scales. 
    more » « less
  3. The gold-standard approaches for gleaning statistically valid conclusions from data involve random sampling from the population. Collecting properly randomized data, however, can be challenging, so modern statistical methods, including propensity score reweighting, aim to enable valid inferences when random sampling is not feasible. We put forth an approach for making inferences based on available data from a source population that may differ in composition in unknown ways from an eventual target population. Whereas propensity scoring requires a separate estimation procedure for each different target population, we show how to build a single estimator, based on source data alone, that allows for efficient and accurate estimates on any downstream target data. We demonstrate, theoretically and empirically, that our target-independent approach to inference, which we dub “universal adaptability,” is competitive with target-specific approaches that rely on propensity scoring. Our approach builds on a surprising connection between the problem of inferences in unspecified target populations and the multicalibration problem, studied in the burgeoning field of algorithmic fairness. We show how the multicalibration framework can be employed to yield valid inferences from a single source population across a diverse set of target populations. 
    more » « less
  4. null (Ed.)